CHROM. 4931

Argentation thin-layer chromatography with silver oxide*

II. Amines, unsaturated and aromatic carboxylic acids

Recently a method of argentation thin-layer chromatography (TLC), with silver oxide on silica gel was shown to separate pyridine and some of its homologs¹. For isomeric compounds, the order of the R_F values was shown to be the same as that of the pK_a values, the dipole moments, or the stability constants of known silver ion complexes of the corresponding pyridine homologs.

As argentation TLC using silver nitrate has been used for the separation of fatty acids, lipids, steroids, etc.², we tried to develop the method with Ag_2O for several other classes of compounds. As it has the advantage of allowing the use of a more polar solvent than chromatography with $AgNO_3$, it was thought that compounds such as amines and acids might be separated, and probably many others, as well as the compounds known to be separated in other forms of argentation chromatography.

Preparation of the plates

The Ag₂O plates were prepared as previously described¹. Ag₂O/Silica Gel GF₂₅₄ (Merck) plates were also prepared in the same way as some compounds can easily be identified by UV absorption on a fluorescent background, even with Ag₂O plates. In this work, only activated plates were used. The activation time was reduced to 45 min, giving better plates.

TABLE I

 $R_F \times 100$ VALUES OF SUBSTITUTED BENZOIC ACIDS, AND PHTHALIC, MALEIC AND FUMARIC ACIDS Solvent I: ethanol-ethyl acetate-conc. NH₄OH (9:3:2); solvent II ethanol-water-conc. NH₄OH (10:1.2:1.6). The solvents were selected by preliminary scanning. The detection of the spots was by UV.

Substituent	Solvent I		Solvent II	
	Silica Gel GF ₂₅₄ + Ag ₂ O	Silica Gel GF ₂₅₄	Silica Gel GF ₂₅₄ + Ag ₂ O	Silica Gel GF ₂₅₄
2,6-di-OH	· 90	92	92	94
3,5-di-NO ₂	88	91	91	92
2-OH	82	88	86	- 90
н	70	77	73	81
2,4-di-OH	65	83	69	85
3-OH	59	7 ⁸	68	82
4-0H	50	80	64	84
Fumaric acid	26	41	38	61
Phthalic acid	20	30	29	46
Maleic acid	14	22	19	33

.

* This research was supported by a grant from the Fundação de Amparo à Pesquisa do Estado de São Paulo, and A. E. MAURO had a studentship from the same Foundation.

NOTES

Carboxylic acids

We investigated some hydroxybenzoic acids, and phthalic, maleic and fumaric acids to test the method. The R_F values, solvents, and methods of detection are given in Table I.

The order of R_F values on the Ag₂O plates is 2,6-di-OH > 3,5-di-NO₂ > 2-OH > benzoic > 2,4-di-OH > 3-OH > 4-OH in both solvents (the numbers indicating substituents in the benzoic acid) and the separations are good. This is the same order as the acidity of the compounds and the inverse order of the pK_a values⁵⁻⁷ and this order is maintained even if we include the dicarboxylic acids, if the pK_a value for the second carboxyl group⁶ is used, giving: 4-OH > fumaric > phthalic > maleic, for the R_F values, and the inverse for the pK_a values.

It seems that the more dissociated the carboxylic acid is in our solvents (the carboxylate ion is stabilized by resonance or hydrogen bonding or both³) the further it is carried on the Ag_2O plate.

The order of dipole moments⁴ (4-hydroxy > 2-hydroxy > 3-hydroxy; fumaric acid > 3-hydroxy > maleic acid > phthalic acid) is different from the order of the R_F values, but would explain the "anomalous" R_F of 2,4-dihydroxybenzoic acid. Considering the pK_a values of 2-hydroxy-, 4-hydroxybenzoic and benzoic acids, the difference in pK_a values, in pK_a units, is: 2-OH - H = -1.17 4-OH - H = +0.36.

TABLE II

 $\mathrm{p}K_{\mathtt{b}}$ values of substituted benzoic acids, and phthalic, maleic, and fumaric acids

Substituent	pКa
2,6-di-OH	1.30 ^a
3,5-di-NO ₂	2.7–2.9 ^b
2-OH	3.00 ^a
H	4.17d
3-OH	4.08 ^c
4-OH	4.53 ^c
Fumaric acid (pK_2)	4.3 ^{8d}
Phthalic acid (pK_2)	5.40 ^{8d}
Maleic acid (pK_2)	6.23 ^d

^a Ref. 3. 2,4-Dihydroxybenzoic acid should have a pK_a value between 2-hydroxybenzoic and benzoic acids.

^b Calculated from the known effect of NO_2 as substituent.

^c Ref. 6. ^d Ref. 7.

If there is additivity of the pK_a values, which is a reasonable hypothesis, the pK_a of 2,4-dihydroxybenzoic acid, having the contributions of the 2- and 4-hydroxy, should be approximately 4.17 - 1.17 + 0.36 = 3.36, *i.e.*, between 2-hydroxybenzoic acid and benzoic acid itself. That the R_F is between that of benzoic acid and 3-hydroxybenzoic acid can be understood if we consider the polarity of the compounds. The 4-hydroxy group, in the benzoic acid group, is an electron donor as the pK_a of 4-hydroxybenzoic acid clearly shows, and could be expected from resonance form (I) that opposes dissociation of the benzoic acid. The direction of electron movement

determines an increase in the dipole moment of the compound, and the increase in polarity has a lowering effect on the R_F value.

It should be noted that the dipole moments of the mono-hydroxybenzoic acids are in the order expected from the direction of the dipole moments (electronic effects) of the substituent groups. The order of the pK_a values is different because of hydrogen bonding, polar effects of substituents, and association³ giving structures like II and III for 2-hydroxybenzoic acid and 2,6-dihydroxybenzoic acid and increasing the acidity of both to a value higher than the non-hydrogen-bonding forms would have.

The inverse order of pK_a values shows that complexing has a major role in the mechanism of the chromatography of the investigated compounds.

Amines

We studied the chromatography of toluidines, chloroanilines and nitroanilines, comparing the *o*-, *m*-, and *p*-isomers in each case. This gives us a good understanding of substituent effect, as compared with aniline. In Table III the R_F values, solvents and method of identification are given.

The analysis of the R_F values on Ag₂O on Silica Gel GF₂₅₄ plates shows clearly that, as in the case of the pyridines¹ and carboxylic acids, complexation (R_F values

in the inverse order of pK_a values) is always present but, as the effect of substituents on polarity is quite different for Me (+1 effect), Cl(-I effect) and NO₂ (-I,-M) and the steric effect of the substituents in the *o*-position is also important, there is always

TABLE III

R_F imes 100 of substituted anilines

Solvent I: petroleum ether-ethyl acetate (I:I); solvent II: petroleum ether-ethyl acetate-benzene (6:3:I). Detection was done under a UV lamp or with ninhydrin reagent. If the chromatogram on Ag₂O was dried after development and left on the table, without further treatment, dark spots developed slowly for the toluidines and chloroanilines. The nitroanilines, if in a high concentration, could be seen as yellow spots.

Substi- tuent	Solvent I		Solvent II	
	Silica Gel GF ₂₅₄ + Ag ₂ O	Silica Gel GF ₈₅₄	Silica Gel GF ₂₅₄ + Ag ₂ O	Silica Gel GF ₂₅₄
o-Cl	93	90	79	82
$o-NO_2$	85	81	68	65
o-CH _a	73	79	52	65
<i>m</i> -C1	79	83	65	68
$m - NO_2$	69	65	50	48
$m-CH_3$	62	76	41	59
p-C1	60	68	35	50
$p - NO_2$	56	59	32	37
p-CH ₃	52	71	30	52
H	61	75	38	58

competition between the pK_a value and the dipole moment μ , the more polar compounds tending to have a lower R_F value.

Taking both these effects into account the order of the R_F values can easily be rationalized, and used as a measure of the extent of substituent effects.

The order of R_F values is: o-Cl > o-NO₂ > m-Cl > o-CH₃ > m-NO₂ > m-CH₃ > H > p-Cl > p-NO₂ > p-CH₃. It is interesting that for all 3 series, we had the R_F values in the order o > m > p. For the toluidines and chloroanilines, this is the inverse order of the p $K_{\rm B}$ values, but is not so for the nitroanilines, for which the p $K_{\rm B}$ values are in the order $m > p > o^{6,7}$, because of the resonance and steric effects in the p and o

TABLE IV

$\mathbf{p}K_{\mathbf{a}}^*$ values and dipole moments (μ) of substituted anilines

The pK_n values were taken from ref. 6, pp. 593-594 except for aniline, which was taken from ref. 7. The dipole moments are from ref. 6, p. 506; aniline and nitroanilines were taken from ref. 4; to have comparable results for each series, data was taken from the same author, wherever possible. References to the original articles are given in the above books.

pK_a	μ
4.42	1.58
4.73	1.44
5.08	1.31
2.62	1.77
3.32	2.66
3.81	2.97
-0.28	4.45
2.45	4.72
0,98	7.10
4.58	1.52
	pK_{a} 4.42 4.73 5.08 2.62 3.32 3.81 -0.28 2.45 0.98 4.58

positions, respectively, giving rise to the structures IV⁸ and V. For the chloroanilines and nitroanilines, the R_F values are in the inverse order of the dipole moments⁴ which gives a reasonable explanation, the more polar isomer having a lower R_F . Thus the order for the toluidines can be explained by the inverse pK_a order, *i.e.*, the isomer having more complexing power having a lower R_F .

The order of dipole moments for chloro- and nitroanilines is $p-NO_2 > m-NO_2 > m-NO_2 > m$ $o-NO_2 > p-Cl > m-Cl > o-Cl$; if we take the R_F values of each pair of anilines substituted by Cl and NO₂ in the same position, we have, as expected from the polarities: $o-Cl > o-NO_2$, $m-Cl > m-NO_2$, $p-Cl > p-NO_2$.

From the discussion above it is also easy to deduce that for each position, o, m, and p, we will always have $-Cl > -NO_2 > -CH_3$ for the R_F values. The fact that mchloroaniline has a higher R_F than o-toluidine is only a consequence of the R_F values of the chloroanilines obeying the inverse order of polarities, while the R_F values of the toluidines obey the inverse order of the pK_a values. Aniline itself can be included in the toluidine series, with a pK_a higher than o-toluidine (steric effect) and lower than m- and p-toliudine (inductive effect).

What is more difficult to understand is that in the series of Cl and NO₂ substituted compounds, which seem to obey an inverse polarity law, when the substituent is at the same position, the R_F values of the o- and m-nitroanilines are higher than that of *m*- and p-chloroanilines, respectively. For p-nitroaniline it could be explained that the pK_a , which is much lower than all the others, is the reason for the compound being in the second place according to R_F value, because of its high polarity. For *m*-nitroaniline, where the resonance effect is supposed to affect the pK and polarity only to a small extent and the ratio of pK_a/μ is not so small, the explanation is not so good.

There are some small differences, especially in the position of the toluidines, on the pure silica gel plates, but in each series the relative positions are maintained, showing that, apart from the complexing, some of the mechanisms are the same in both cases.

Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Araraquara, Estado de São Paulo (Brazil)

S. TABAK A. E. MAURO A. Del'Acqua

- I S. TABAK AND M. R. M. VERZOLA, J. Chromatog., 51 (1970) 334.
- 2 L. J. MORRIS, J. Lipid Res., 7 (1966) 717. 3 L. PAULING, The Nature of the Chemical Bond, 3d. ed., Cornell University Press, Ithaca, N.Y., 1960, pp. 478-479.
- 4 O. A. OSSIPOV AND V. I. MINKIN, Handbook of Dipole Moments, Vischaya Schkola, Moscow, 1965; also ref. 6, pp. 500 et seq.
 5 N. F. HALL AND M. R. SPRINKLE, J. Am. Chem. Soc., 54 (1932) 3469.
 6 Y. YUKAWA, Handbook of Organic Structural Analysis, W. A. Benjamin, New York and
- Amsterdam, 1965, p. 593. 7 A. ALBERT AND E. P. SERJENT, Ionization Constants of Acids and Bases, Methuen, London,
- and John Wiley, New York, 1962.
- 8 L. PAULING, The Nature of the Chemical Bond, 3rd. ed., Cornell University Press, Ithaca, N.Y., 1960, p. 296.

Received June 23rd, 1970